Hamilton cycles in 1-tough triangle-free graphs
نویسندگان
چکیده
A graph G is called triangle-free if G has no induced K3 as a subgraph. We set 3 = min{3i=1 d(vi)|{v1; v2; v3} is an independent set of vertices in G}. In this paper, we show that if G is a 1-tough and triangle-free graph of order n with n6 3, then G is hamiltonian. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Tough spiders
Spider graphs are the intersection graphs of subtrees of subdivisions of stars. Thus, spider graphs are chordal graphs that form a common superclass of interval and split graphs. Motivated by previous results on the existence of Hamilton cycles in interval, split and chordal graphs, we show that every 3/2-tough spider graph is hamiltonian. The obtained bound is best possible since there are (3/...
متن کاملPowers of Hamilton Cycles in Pseudorandom Graphs
We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph G is (ε, p, k, l)-pseudorandom if for all disjoint X and Y ⊆ V (G) with |X| ≥ εpkn and |Y | ≥ εpln we have e(X,Y ) = (1± ε)p|X||Y |. We prove that for all β > 0 there is an ε > 0 such that an (ε, p, 1, 2)-pseudorandom graph on n vertices with minim...
متن کاملTough Ramsey Graphs Without Short Cycles
A graph G is t-tough if any induced subgraph of it with x > 1 connected components is obtained from G by deleting at least tx vertices. It is shown that for every t and g there are t-tough graphs of girth strictly greater than g. This strengthens a recent result of Bauer, van den Heuvel and Schmeichel who proved the above for g = 3, and hence disproves in a strong sense a conjecture of Chvatal ...
متن کاملCycles in triangle-free graphs of large chromatic number
More than twenty years ago Erdős conjectured [4] that a triangle-free graph G of chromatic number k ≥ k0(ε) contains cycles of at least k2−ε different lengths as k →∞. In this paper, we prove the stronger fact that every triangle-free graph G of chromatic number k ≥ k0(ε) contains cycles of 1 64 (1− ε)k 2 log k4 consecutive lengths, and a cycle of length at least 14 (1− ε)k 2 log k. As there ex...
متن کاملExtending Cycles Locally to Hamilton Cycles
A Hamilton circle in an infinite graph is a homeomorphic copy of the unit circle S1 that contains all vertices and all ends precisely once. We prove that every connected, locally connected, locally finite, claw-free graph has such a Hamilton circle, extending a result of Oberly and Sumner to infinite graphs. Furthermore, we show that such graphs are Hamilton-connected if and only if they are 3-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 254 شماره
صفحات -
تاریخ انتشار 2002